Алгоритм Прима для островного дерева

Для нашего последнего алгоритма на графах давайте рассмотрим задачу, с которой часто сталкиваются разработчики онлайн игр и провайдеры интернет-радио. Проблема в том, что им нужно эффективно передавать части информации для всех и каждого, кто может её услышать. Это важно в играх, поскольку все игроки должны знать последний ход каждого из них. Это важно для интернет-радио, потому что настроенные на него слушатели должны получить все данные, по которым можно было бы воссоздать прослушиваемую песню. Задача о вещании проиллюстрирована рисунком 9.

../_images/bcast1.png

Рисунок 9: Задача о вещании

Существует несколько способов её решения путём непосредственного перебора. С них мы и начнём, чтобы лучше разобраться в вопросе. Так же это поможет вам оценить решение, которое мы в итоге предложим. Начнём с того, что станция вещания имеет некую информацию, которая должна быть передана всем слушателям. Простейшим решением станет хранить список всех слушателей и отсылать им индивидуальные сообщения. На рисунке 9 показана небольшая сеть с передатчиком и несколько слушателей. Используя первый подход, следует отправлять по четыре копии каждого сообщения. Предполагая, что используется путь с наименьшими затратами, давайте посмотрим, сколько времени каждый маршрутизатор потратит на расылку одинаковых сообщений.

Все сообщения от вещателя идут через маршрутизатор А, поэтому он видит все четыре копии каждого. Маршрутизатор С видит уже по одной из них, однако маршрутизаторы B и D увидят по три копии сообщений, поскольку через них проходит кратчайший путь к слушателям 1, 2 и 3. С учётом того, что для радиовещания станция должен расслылать сотни сообщений каждую секунду, получается огромный объём лишнего трафика.

Решение методом перебора состоит в том, что станция вещания посылает единственную копию сообщения и позволяет маршрутизаторам дальше разбираться самим. В этом случае простейшим решением станет стратегия под названием неконтролируемое наводнение. Работает она так. Каждое сообщение выпускается с временем жизни (ttl - от англ. time to live), установленным в некоторую величину, большую или равную количеству рёбер между станцией вещания и наиболее удалённым слушателем. Каждый маршрутизатор получает копию сообщения и рассылает его всем своим соседям, уменьшая ttl на единицу. Так продолжается до тех пор, пока значение ttl не станет равным нулю. Можно легко убедиться, что неконтролируемое наводнение генерирует намного больше ненужных сообщений, чем наша первая стратегия.

Решение задачи лежит в создании островного дерева с минимальным весом. Формальное определение минимального островного дерева \(T\) для графа \(G = (V,E)\) следующее: \(T\) - это ацикличное подмножество \(E\), соединяющее все вершины в \(V\). Сумма весов рёбер в \(T\) - минимальна.

Рисунок 10 показывает упрощённую версию графа вещания и выделяет рёбра его минимального островного дерева. Теперь, чтобы решить задачу вещания, станция просто направляет единственную копию сообщения в сеть. Каждый из маршрутизаторов пересылает его тому своему соседу, который является частью островного дерева, за исключеннием источника посылки. В нашем примере А перешлёт сообщение В, В - C и D. D отправит сообщение E, который передаст его F, а тот - G. Никто из маршрутизаторов не увидит больше одной копии сообщения, а все слушатели смогут его услышать.

../_images/mst1.png

Рисунок 10: Минимальное островное дерево графа вещания

Алгоритм, который мы используем для решения этой задачи, называется алгоритмом Прима. Он входит в семейство под названием “жадные алгоритмы”, поскольку на каждом шаге выбирается наименее затратный из предлагаемых шагов. В данном случае таковым будет перемещение по ребру с наименьшим весом. Наше последнее задание: реализовать алгоритм Прима.

Основная идея для создания островного дерева состоит в следующем:

Пока T не островное дерево
   Найти ребро, которое можно безопасно добавить к дереву
   Добавить новое ребро в T

Загвоздка состоит в пункте, направляющем нас “найти ребро для безопасного добавления”. Определим безопасное ребро как то, которое соединяет вершину из островного дерева с вершиной вне его. Это гарантирует, что дерево всегда останется деревом и не будет иметь циклов.

Код на Python для реализации алгоритма Прима показан в листинге 2. Он похож на алгоритм Дейкстры в том, что оба они используют очередь с приоритетом для выбора следующей вершины, которая будет добавлена в растущий граф.

Листинг 2

from pythonds.graphs import PriorityQueue, Graph, Vertex

def prim(G,start):
    pq = PriorityQueue()
    for v in G:
        v.setDistance(sys.maxsize)
        v.setPred(None)
    start.setDistance(0)
    pq.buildHeap([(v.getDistance(),v) for v in G])
    while not pq.isEmpty():
        currentVert = pq.delMin()
        for nextVert in currentVert.getConnections():
          newCost = currentVert.getWeight(nextVert) \
                  + currentVert.getDistance()
          if nextVert in pq and newCost<nextVert.getDistance():
              nextVert.setPred(currentVert)
              nextVert.setDistance(newCost)
              pq.decreaseKey(nextVert,newCost)

Следующие рисунки (с 11 по 17) демонстрируют работу алгоритма с простым деревом из примера. Начинаем с вершины А. Для всех прочих вершин расстояние инициализированно бесконечностью. Рассмотрев соседей А, мы обновляем значения пути двух дополнительных вершин В и С, поскольку расстояние до них через А меньше бесконечности. Это перемещает В и С в начало очереди с приоритетом. Обновляем у этих узлов ссылки на предшественника, установив их на А. Важно отметить, что формально мы ещё не добавили В и С в островное дерево. Узел не считается его частью, пока он не удалён из очереди с приоритетом.

Поскольку В имеет наименьшее расстояние, следующим рассматриваем его. Проверка соседей В показывает, что пути D и E можно обновить. Оба этих узла получают новые значения расстояний и обновлённые ссылки на предшественника. Перемещаясь к следующему узлу по очереди с приоритетом, мы обнаруживаем С. Единственный смежный с ним узел, который до сих пор находится в очереди, - это F. Следовательно, мы можем обновить расстояние до него и отрегулировать его позицию в очереди.

Теперь проверяем вершины, смежные с узлом D. Обнаруживаем, что можем обновить Е и уменьшить его расстояние с 6 до 4. Когда мы делаем это, ссылка на предшественника Е устанавливается в D, что подготавливает узел к добавлению в островное дерево (правда, на другую позицию). Оставшаяся часть алгоритма действует так, как от неё ожидается, добавляя в дерево каждый новый узел.

../_images/prima.png

Рисунок 11: Трассировка алгоритма Прима

../_images/primb.png

Рисунок 12: Трассировка алгоритма Прима

../_images/primc.png

Рисунок 13: Трассировка алгоритма Прима

../_images/primd.png

Рисунок 14: Трассировка алгоритма Прима

../_images/prime.png

Рисунок 15: Трассировка алгоритма Прима

../_images/primf.png

Рисунок 16: Трассировка алгоритма Прима

../_images/primg.png

Рисунок 17: Трассировка алгоритма Прима

Next Section - Заключение